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circular dichroism in US 

S P Collins, D Laundy, C C Tang and G van der Laan 
Synchrotron Radiation Department, CCLRC Daresbluy Labomory, Wanington WA4 4AD, UK 
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Abstract. Magnetic x-ray circular dichroism MXCD) has been measured in a ferromagnetic 
uranium monosulphide crystal by monitoring the fluorescence signal over the uranium h . 5  
edges. Despite sizeable absorption correc:ions, we have obrained a precise value of the dichroic 
branching ratio, which is compared with sum-rule predictions. We find that, in contrast to the 
case of cubic 3d transition metals where the magnetic dipole term (T,) can be oeglected, its 
contribution to the dichroism signal in the present case is larger than tha: of the spin polarizakion, 
(&). The dichroism spectrum is shown to exhibit considerably more srmchlre than those of 
resonant magnetic diffraction from antiferromagnetic actinide compounds, and is found to be in 
good qualitative agreement with atomic calculations of 5P and SP configurations. 

1. Background magnetic scattering and absorption 

Interest in magnetic dichroism at uranium M edges stems largely from measurements 
of resonant magnetic x-ray diffraction (or resonance exchange scattering) from 
antiferromagnetic actinide compounds. Since the discovery of huge increases in magnetic 
diffraction intensities from ur;inium arsenide, at photon~energies close to the N.5 absorption 
edges 111, a wide range of magnetic actinides has been studied by x-ray diffraction [2-51 with 
magnetic intensities reaching as high as one per cent of the chemical Bragg reflection; 
a figure closer to the norm for neutrons than x-rays. These unusually large 'resonant 
enhancements' have been attributed [61 to strong electric dipole transitions from the 3d3/2,~/~ 
core levels, to the highly polarized 5f shell, which is largely responsible for the magnetism 
of actinide ions. 

However, scattering and absorption are fundamentally related throagh the optical 
theorem [7, 81, which states that the total beam attenuation is proportional to the imaginary 
(phase-shifted) component of the scattering amplitude in the fonvurd direction. One 
can consider resonant magnetic diffraction as being caused by magnetization-dependent 
attenuation, and therefore strong magnetic sensitivity in scattering should be minored in 
absorption measurements. 

The resonant photon scattering amplitude (or scattering length, to correctly describe its 
dimensional properties), in S a  (cylindrical) symmetry and in the limit of a weak crystal 
field, can be written within the dipole approximation [6, 81 as 

f , ( ~ )  = - -- [ ( E ' * .  E)[F$(E)  + F:,(E)J + i(&* x E ) .  ~ [ F ! , ( E )  - F:,(E)I 

(1) 
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in terms of which the scattering cross-section is simply 

du 
dQ - = lfrI2. 

Here, E, E' are the primary and secondary (scattered) beam polarization unit vectors, 
q = k / A  is the photon wave vector magnitude and Fd(E) are dimensionless energy- 
dependent dipole transition strengths [8] with magnetic components v = 0, &I. 

For weak forward scattering the photon polarization state is preserved; we have E = E', 

and the polarization cross-product in (1) vanishes unless the polarization vectors are 
complex, which we identify with a state of circular polarization. It is, perhaps, useful to 
comment that after averaging over all possible magnetic directions (i.e. spherical symmetry) 
the forward scattering limit of (1) reduces to f, ( E )  = - (1 /2nq) [F:, ( E )  +FL, (E)+Fd ( E ) ] ,  
which is known as the isotropic spectrum. A form of (1) where the transition probability has 
been separated specifically into isotropic and dichroism spectra can be found for instance 
in [9. IO]. For experimental geometries where the symmetry vector and photon beam are 
collinear, the third term in (1) vanishes, leaving no sensitivity to Fd(E). This is, in fact, 
the present case, so we keep only the first two terms of scattering length. 

The total linear attenuation coefficient can be derived from (I), by making use of the 
optical theorem [ 1 I] 

where PZ is the Stokes parameter for circular polarization (i.e. the average helicity), and no 
represents the density of atoms in the target. 

The first term in (3) is the average attenuation, which is independent of the photon 
circular polarization state and becomes the isotropic absorption spectrum when linear 
dichroism is negligible, i.e. where 2F,'(E) 2 F i 1 ( E )  + F l , ( E ) .  The second term, known 
as magnetic x-ray circular dichroism (MXCD), couples the photon circular polarization Pz 
to the projection of the target's magnetic vector m along the photon propagation vector, 
q. The precise contribution that MXCD makes to the total attenuation coefficient y ( E )  
can be determined experimentally, by reversing the target magnetization m (or Pz), thereby 
reversing the sign of the dichroism term. The difference in attenuation coefficients for the 
two configurations, 

is the magnetic dichroism signal, which depends on precisely the same difference in 
resonance strengths as magnetic diffraction. 

Data from resonant magnetic x-ray diffraction experiments and MXCD are therefore 
very closely related, but differ in two key aspects. Firstly, dichroism is sensitive only to the 
imaginary part of the resonant amplitude, and secondly, as a 'bulk' probe, MXCD provides 
no spatial selectivity and can be applied only to materials with a net magnetic polarization. 
While diffraction (and, in fact, linear dichroism [12]) can provide spectroscopic data on 
antiferromagnets, circular dichroism requires ferri- or ferromagnetic targets. 
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2. Measurements on uranium monosulphide 

Without doubt, the simplest and most reliable method of obtaining accurate absorption 
data is by measuring the attenuation of an x-ray beam through a uniform thin foil. 
Unfortunately, this is not always practical. Even when thin foils or films of a suitable 
thickness (typically submicrometre for soft x-ray photons) are available, they are commonly 
either polycrystalline or amorphous. Since most magnetic actinide compounds exhibit 
considerable magnetocrystalline anisotropy, one would clearly prefer to perform dichroism 
measurements on single-crystal samples. 

There are, however, a number of indirect techniques for determining absorption spectra 
with thick targets, of which two have found particular prominence. The first relies on the 
detection of Auger and associated secondary electrons, emitted in radiationless transitions 
which de-excite the atomic core-hole states generated by photon absorption. In the second 
approach, secondary (fluorescence) x-ray photons from radiative de-excitation modes are 
monitored. Both methods are backed by arguments suggesting a proportional relationship 
between the intensity of secondary radiation and the absorption cross-section 113, 141. We 
have adopted the latter method, which does not require the high-vacuum conditions required 
for electron yield detection. 

A convenient target for these measurements is a crystal which can be magnetized by a 
compact conventional electromagnet, has a large 5f magnetic moment, and can be cooled 
below the Curie temperature, Tc, by a nitrogen gas cryostat system. (The latter requirement 
is to allow acold crystal'to fit within the 6 mm pole gap of our 1 T electromagnet.) Uranium 
monosulphide (Tc N 177 K, pL.,a,jum rr 1.7 p,& was deemed to be ideal, with a modest 
(<l T) field directed along a (111) easy axis of the cubic NaCl crystal smcture sufficient 
to achieve a high degree of magnetic saturation. 

Average M4.5 absorption spectra can be inferred from measurements of   the total 
fluorescence intensity as a function of the primary photon beam energy. In this case, a 
Ge (111) channel-cut monochromator provided a nominal energy bandwidth of 1.3 eV 
(smaller than the 4 eV corehole lifetime width), and the fluorescence signal was monitored 
by a germanium solid state detector (figure 1). Placing the detector as close as possible 
(-2.5 cm) to the target crystal ensured a large solid angle of detectable photons. Working 
at photon energies of 3.5-3.8 keV, serious loss of signal intensity can arise from absorption 
in air; a distance of just S cm can attenuate the primary or secondary beam by more than 
a factor of two. To alleviate this problem, most air paths were replaced by helium-filled 
tubes, sealed with 6 pm Kapton windows. The lower curve of figure 4 is an example of 
such a total fluorescence spectrum. 

Observation of MXCD requires the photon helicity to be altemately parallel and 
antiparallel to the target magnetization. The difference in fluorescence intensity between 
the two configurations reveals the dichroic signal. A number of techniques are available for 
generating circularly polarized synchrotron radiation. Special insertion devices based, for 
example, on elliptical or crossed undulators [15, 161 promise very high fluxes of polarized 
photons, while alternative methods, such as the x-ray quarter-wave phase plate, have already 
proved highly effective in dichroism studies [17]. Our approach is much simpler. 

Synchrotron radiation emitted by dipole bending magnets becomes increasingly circular 
in polarization at progressively larger angles above or below the beam centre [IS, 191. While 
a corresponding loss in flux bars the use of beams with complete circular polarization, one 
can readily extract partially polarized radiation with small intensity losses. For the present 
measurements, extracting the beam at 10.10 mrad provided a calculated circular polarization 
of Pz N 0.52 with nearly 90% of the peak flux (in fact, the choice of viewing angle, and 
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Figure 1. The experimental layout for uranium M-edge magnetic circular dichroism 
measuremenu by fluorescence detection. The primary and secondary (fluorescence) x-ray beams 
subtend the illuminated crystal face at angles 01 = 35" and f l  = 55". respectively. 

hence circular polarization, was restricted by the fixed monochromator crystal height). 
Having obtained a suitable source of circularly polarized photons, dichroism 

measurements proceeded by observing the fractional change in fluorescence rate, A l j l  = 
(I+ - I-)j(l+ + I - ) ,  upon switching between opposite (+, -) magnetic field directions 
in a 2 s asynchronous cycle. Figures 2 and 3 display the variation in dichroic asymmetry 
near the & peak, with magnetic field strength and temperature, respectively. Combined 
with the observation of the anticipated sign change on reversal of the photon helicity (by 
extracting radiation from above and below the beam centre), the graphs confirm the signal 
to be magnetic in origin, and the small electromagnet to be adequate to saturate the sample 
magnetization along an easy axis. 

Figure 2. The dichroic asymmetry. A l l 1  = (I+ - IL)/(l+ +I - ) ,  near the uranium M, peak. 
as a function of applied field with the t q e t  crystal at 100 K. 
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Figure 3. The MA dichroic asymmetry v&us crystal tempmature with an applied field of 0.83 T. 
Note that the signal drops rapidly near the Curie temperature of 177 K. 

All subsequent measurements of the dichroic spectrum (figures 4 and 5 )  were performed 
with a field of 10.83 T and the temperature kept at 100 K. While the total fluorescence 
in figure 4 is visibly distorted by very strong sample absorption variations, the asymmetry, 
generated by circular dichroism, clearly exhibits considerable structure. The M4 peak is 
quite symmetric, and has the same sign as the much weaker M5 peak. This is precisely 
what was~inferred from magnetic diffraction meamrements [I]. The M5 magnetic resonance 
is highly asymmetric, and between the two peaks oscillations reminiscent of extended x-ray 
absorption fine structure (EXAFS) are observed. Some preliminary results on US are given 
in [ZO]. 

3. Data analysis 

In order to obtain the dichroism spectrum, A y ( E ) ,  from the fluorescence asymmetry, 
AIl I  in figure 4, three steps are required. First, one must correct the data for photon 
absorption variations, converting fluorescence intensities to attenuation coefficients. Second, 
the dichroism data have to be corrected for the finite circular polarization, Pz, of'the 
primary beam. Finally, one must multiply the relative dichroism, A y ( E ) / y ( E ) ,  by the 
total attenuation, y(E), to reveal the absolute dichroism signal. The combined effect of 
these operations produces a dichroism spectrum (figure 5) in which the strong features (the 
&. 5 white lines) become more pronounced with respect to weaker structures, and narrow 
considerably in width. 

We now consider the data corrections in more detail, turning first to the absorption 
correction, which has two distinct origins. The simplest of these arises from the energy- 
dependent attenuation of the primary and secondary photon beams by materials other than 
the target crystal. This contribution, mainly due to air, beryllium and the germanium 
dead layer of the x-ray detector, exhibits a simple energy dependence. It does nof affect 
the relative dichroism. The second (and typically the largest) absorption correction does 
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Figure 4. The measured total fluorescence specuum, I(E) (lower curve), and dichroic 
asymmetry, All1 (upper curve). Note that severe absorption variations tend to scale down 
the. strong resonances in both the total and magnecic spectra, broaden the peaks, and reduce the 
intensities at the lowsnergy end of the specuum. 
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Figure 5. The absorption s p e c r "  y(E) = y+ + y- (solid line) and dichroism Ay(E) = 
y+ - y- (error ban), both normalized to unity at the peak of y ( E ) .  The data have been 
conected far absorption and the dichroism specuum normalized to Pz = + I .  The absorption 
corrections are quite severe. approaching a factor of five at the Ms edge. 

alter the relative dichroism. It arises from attenuation variations within the target crystal, 
which lead to strongly energy-dependent photon penetration depths, and a scaling down, or 
saturation, of the strongest resonant features. 

The appropriate absolption correction to map the fluorescence rate, I,,,, on to the 
corresponding linear attenuation coefficient, M , ~ ,  with the geometry illustrated in figure 1 
is 
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with a correction for the relative dichroism spectrum of 
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The symbols in the above expressions are defined as follows: y~ = % ( E )  + 
m$(E), uranium M edge attenuation coefficients; yo(E), non-M edge US attenuation 
coefficient; yt,,(E) = yajr(E)tair + y ~ ~ ( e ) t ~ ~ ,  attenuation of primary beam before sample; 
Y ~ ~ E L , ~ )  = yair(Eh4,s)bir + YB~(EL&w~ + Y G A E ~ , , ) ~ G ~ .  attenuation of fluorescence 
radiation afer sample; y(E&,J sample attenuation of fluorescence; ZM = ZM,(E)+ZM>(E), 
fluorescence rates from Mq, 5 excitations; A, adjustable parameter. 

We have assumed that the M4 and Ms fluorescence spectra each exhibit a single 
transition, namely, the M ~ N s  and MsN, lines at E’ = 3.17 and 3.38 keV, which actually 
account for around 90% of the total intensity [21]. Not doing so would add even more 
complexity to the already cumbersome expressions in (5) and (6). 

The attenuation coefficients required in (5) and (6) are slowly varying functions of 
photon energy, E ,  and have been extracted from power-law fits to atomic calculations [22]. 
Similarly, a comparison between calculated and measured coefficients at a single energy 
can yield the parameter A. However, in the present case the absorption corrections are so 
large, and sensitivity to the input parameters so great, that we have employed two further 
scale factors: one for the beryllium, germanium and air attenuation, and a second for the 
fluorescence absorption within the target crystal. By adjusting these parameters, the total 
uranium attenuation coefficients were forced to exhibit an & peak to edge jump ratio of 
-6.5, matching the results of previous absorption measurements [23], and an Ms to M4 
intensity ratio of 2.1, determined from the atomic calculations described later in this paper. 
The extra scale factors were both close to two, with no additional scaling required to describe 
the relative dichroism spectrum. 

The question of the net circular polarization in the monochromatic primary beam is 
also far from trivial. Prior to the double-bounce monochromator crystal, we calculate a 
value of P2 = zk0.52 for beams extracted at fO. 10 mrad. With very small monochromator 
diffraction angles (i.e. high-energy, low-order reflections) the monochromator induces a 
modest departure from the circular polarization of the unconditioned synchrotron beam. 
However, as the scattering angle approaches 28 = 90”. the linear polarization component 
within the scattering plane (then state) is reduced dramatically with respect to the orthogonal 
a component. In dynamical diffraction, calculation of the monochromatic beam circular 
polarization, Pi. is a complex problem. Essentially, three factors are important [%I. First, 
the U and R Danvin widths differ by a factor of cos28, reducing the R intensity more 
than the U .  Second, there is a phase shift between the two orthogonal linear components 
which further reduces the circular polarization. Finally, the peak reflectivity for the x state 
is reduced since the longer extinction depth leads to increased absorption. 

We have employed a simple model for the circular polarization which neglects absorption 
changes, but takes into account two Darwin widths and a simple description of the phase 
 shift.^ Briefly, we assume that the reflectivity curves are ‘top hat’ functions, with widths 
which differ by a factor of cos28, and that the phase of each linear polarization state varies 
linearly from - ~ / 4  to + ~ / 4  across the reflectivity curve. Within this model, a symmetric 
(+ - + - . . .) crystal arrangement tends to produce a large reduction in polarization on the 
first reflection, due to a combination of the double Darwin width and phase shift. Subsequent 
reflections reduce the polarization by a smaller amount, since only the accumulated phase 
shift plays a role. (In fact, with an even number of reflections in an asymmetric (e.g. 
+ - -+) arrangement the phase shift cancels, as outlined in [=I.) 
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While this model is simplistic, it does have the advantage that one can write an analytical 
expression for the monochromatic beam circular polarization 

where P3, Pz and P: are the Stokes parameters for linear polarization of the polychromatic 
beam, and circular polarization of the polychromatic and monochromatic beams, 
respectively. The number of (symmetric) crystal reflections is given by N ,  and for the 
present measurements we have N = 2. For uranium &,sedge studies with a Ge (111) 
monochromator, we have 28 N 61-65", and the circular polarization is approximately halved 
to P i W )  N 0.24 and Pi(M5) N 0.21. 

For comparison, we can also write the polarization for the opposite extreme, where 
absorption is much stronger than scattering. This is simply the weak-scattering limit. One 
can adopt a number of techniques to determine the photon polarization following an N -  
bounce crystal monochromator (for example, the compact density matrix approach described 
in [SI), leading to the result 

ZP,  COS^ 28 
- (I + 9) + (1 - 5) COP 28 ' 

p' -~ 

The weak-scattering model predicts a reduced circular polarization at the edge of 
Pi = 0.13. One might therefore expect the polarization from a real crystal to fall somewhere 
between these two extreme models, giving values for the present experiment which are 
perhaps slightly lower than those of equation (7). Since the overall uncertainty in the beam 
polarization is considerably less than that of the absorption correction, though, we feel that 
the simple model outlined above is perfectly adequate. 

4. Dichroism and resonant magnetic diffraction 

The first thing to notice about the dichroism spectrum in figure 5 is its striking similarity to 
the magnetic diffraction spectra from a number of antiferromagnetic uranium compounds 
(see, for example, [l]). This is, of course, no accident as the two processes are linked 
through the optical theorem (equation (3)). The M4 to M5 peak ratio in diffraction (after 
performing an absorption correction very similar to the present one) is around two decades, 
compared to one decade for dichroism. This is expected, since the former scales with the 
square of the magnetic scattering length. Moreover, the destructive interference observed 
between the M4.5 peaks in diffraction indicates that the magnetic resonances are of the same 
sign, confirmed by the present results and electron yield measurements on USbo.5T~.5 and 
We2 powders [26]. (Note that, in spin magnets such as 3d metals, spin-orbit-split magnetic 
resonances are always of opposite sign, reflecting the opposite spin-orbit coupling of the 
core states. Resonances of the same sign indicate a significant orbital polarization of the 
magnetic ground state.) 

Looking in more detail at the diffraction and dichroism spectra, both exhibit 
approximately symmetric Mq peaks, in stark contrast to the highly asymmetric M5 
resonances. Here, the similarities end. The M5 line-shape in diffraction is dominated by 
spectacular interference effects between the broad real tails of the two strong resonances. 
The structure is well described by a simple Lorentzian resonance at each edge 
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where E h 5  are binding energies for single magnetic resonances of amplitude and r 
is the cowhole lifetime widih. The successful application of such a simple, sbuctureless 
model reveals that there is very little sensitivity to the underlying magnetic spectrum. In 
contrast, absorption spectroscopy is only sensitive to the narrower imaginary components 
of the scattering length (see equation (4)). Lifetime broadening is far less pronounced, 
and the M5 lineshape cannot be modelled by a single Lorentzian. The measured structure 
in MXCD is of fundamental importance and not merely an artifact of the experiment. 
Similarly, the very weak, relatively broad, EXAFS-like features observed between the Mq 
and M5 resonances in figure 5 are absent in the diffraction spectra. Again, the broad real 
resonant tails of the strong resonances dominate the spectrum far from the resonant centres, 
obscuring more subtle features. 

While a survey of the literature [27-311 confirms that ,dichroism data consistently 
exhibit more spectroscopic sbucture than resonant diffraction from a wide range of magnetic 
materials, the latter remain important for two key reasons. First, magnetic diffraction can 
provide very accurate values of the inregrated resonance signals at various absorption edges. 
Second, and most importantly, the spatial sensitivity of diffraction can play a crucial role, 
not least in enabling measurements to be performed on antiferromagnets. 

5. Integrated dichroism signals and the sum rules for local moments 

In this section, we compare our findings for the integrated W.5 dichroism signals with 
various moments by applying the appropriate sum rules. First, we adopt the naive 
assumption that the magnetic dipole term (T,) is negligible, and show that this leads to 
very poor agreement with Hund's rule ground-state values. After establishing that (Tz} is 
large, we introduce the effective spin moment (Se), which includes the magnetic dipole 
term, and demonstrate a qualitative accord with Hund'S rule predictions for the ratios of 
the moments. Furthermore, by combining our results with those of a neutron diffraction 
measurement, we provide a unique value of {T,). Finally, we show that the present results 
for ( .Se ) / (&)  and (T,) agree well with atomic calculations of U 5f and 5 8  configurations 
in the intermediate coupling scheme. 

Following the derivation of sum rules [32, 33, 341 relating the integrated dichroism 
signal over pairs of spin-orbit-split core-level excitations to the ground-state spin and orbital 
projections, (S,) and {Lz},  several authors have employed x-ray absorption spectroscopy to 
obtain values for spin and orbital magnetic moments [33, 351. Since it is experimentally 
difficult to determine the isotropic spectrum, which requires a complete averaging over all 
magnetization directions, we have made the assumption [F:,(E) + F!,(E) + F,(E)]  rr 
3/2[F:,(E) + F!,(E)], which is equivalent to saying that magnetic linear dichroism, 
governed by [2Fd(E)-F:,(E)-FF',(E)], is weak. For the present case, this assumption is 
justified by computing the linear dichroism for a uranium 5fL configuration using Cowan's 
code [37]. Even with a fully aligned moment, we find that the correction to the above 
approximation is smaller than 3%, which is well within the error bars of the experimentally 
derived moments. Moreover, there is no effect on the ratios of moments. 

The first sum rule relates the measured integral ratio 

(10) 
&+Ms AY(E)  dE 

y ( E )  dE 
P =  

to the net ground-state orbital polarization, via the expression 
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where c and 1 are, respectively, the orbital momenta of the core level and the localized 
valence state, and nh = 41 + 2 - n is the number of valence holes in the ground state. For 
the present example (3d-Sf), we have c = 2, 1 = 3, and the required expression reduces to 
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A second sum rule connects the ratio 

to the net spin polarization, (S,). This rule is more complicated to apply as it is also sensitive 
to the expectation value of the magnetic dipole operator (Tz), which describes correlations 
between the spin and position of each electron. In dealing with cubic 3d transition metals, 
it has been argued [33] that the conhibution from (T,) is negligible compared with (SJ. 
Although there is no obvious justification for making such a claim in the case of uranium 
M4,s edges, we nonetheless adopt this position as a starting point, and write the second 
sum rule as 

From the measured dichroic integrals, we have 

s = +0.121 j (S,) =-t2.2 
p = -0.100 + (L,) =--3.6 

where we have taken n = 2, although the choice of n is not too critical as long as n << nh.  
Some comments on the experimental uncertainties associated with these values are in 

order. The statistical errors in the integrated dichroism signals are rather small; around one 
per cent for the M4 edge, and ten per cent for the weaker M5 resonance. However, both 
integrals have been significantly modified by the data corrections outlined in section 3. We 
estimate that the net uncertainty in the values of 8 and p ,  and hence in (S,) and &), may 
be as high as f30%, being dominated by systematic errors in the data corrections. The error 
in the ratio of the M5 to resonance integrals, on the other hand, is quite small, since 
the corrections applied to the two edges are comparable in magnitude. The small value of 
the M5 to & ratio of 0.13 f 0.03, even with this very cautious error estimate, leads to the 
remarkably precise result 

s 
- = -1.21 zk0.06 (16) 
P 

which, within the present model, gives 

Unfortunately, the predicted total moment of M = 2(S,) + (L,) = 0.8 does not 
tally with the findings of neutron diffraction, which suggest M = 1.7 PE. Furthermore, the 
spin to orbital ratio in (17) is at odds with both a magnetic form factor analysis [36] (which 
gives (S , ) / {Lz )  = -0.22) and calculations based on a likely Hund's-rule ground state. The 
latter can simply be written as 

(18) 
(S,) 
( L z )  

J ( J  + 1) - q L  + 1) + S(S + 1) 
J ( J  + 1) + L(L + 1) - S(S + 1) 

_-  - 
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which, for a less than half-filled 5f shell reduces to 
(S,) -S 
(L,) L + I  - ' n ( U - n + 1 ) + 2  

-n ' 

(19) - 

and takes on values of -0.17, -0.21 and -0.29 with I = 3 and n = 2,3 and 4, respectiyely. 
The orbital moment, on the other hand, does agree reasonably well with the neutron 
assignment [36] of ML = -3.0 P B ,  so it would appear that the problem lies with our 
treatment of the second sum rule for the spin. Evidently, neglecting (T,) is not valid in the 
present case. 

Our next step is to admit the possibility of a significant conhibution from (Tz), whence 
the second sum rule becomes [34] 

I ( I  + 1) - 2 - c(c + 1) 
6 =  

3cnh 
I ( I  + l)[l(I+ 1) + 2c(c + 1) +4] - 3(c - l)*(c + 2)' 

2l(I + 1)[1(1+ 1) - 2 - c(c + l)] 

For convenience, we will refer to the combination ((S,) + 3(Tz)) as the efective spin, (Se), 
and our main experimental result is then (Se)/(&) = -0.61 50.03. This ratio can again 
be computed for a Hund's-rule ground-state, by writing 1341 

( ~ , ) = ( l - n + + )  
3(S - J)Z(S+ J + 1)Z - L(L + I)[L(L + 1) - 2 S ( S  + 1) + 25(J + l)] 

(21) 

X 
2(U + 3)(21- 1)(2L - l ) S ( J  + 1) 

Table 1 gives a list of~calculated moments for a number of 5f Hund's-rule configurations. 
Still, none of the Hund's-rule ground states reproduce the experimental value of (Se) /&) ,  
but the results are already more in line with the measurements. By combining the values 
for (S,) and (L,) derived from neutron diffraction with the present results for (Se ) / (Lz ) ,  we 
can obtain a unique and rather precise estimate for the expectation value of the magnetic 
dipole operator 

which can be compared with the predictions in table 1. Again, none of the Hund's-rule 
values are in close agreement with the experimental data. 

Table 1. The calculated moments of Hund's-de ground states. The moments have been rescaled 
with the Same Fdctor to yidd the correct (experimental) total moment, M. The calculated total 
moments prior to rescaling are denoted by M*. 

Configuration (LJ (Sd (U (Se) (S.) l (Ld M' h a )  M old 
U 5f' ' F ~ D  -2.3 0.29 0.46 1.7 ~-0.72 -2.1 -1.7 
U 5P 3H4 -2.6 0.43 0.25 1.2 -0.46 -3.2 -1.7 
U 5f3 419,2 -3.0 0.63 0.09 0.9 -0.31 -3.3 -1.7 
U Std '14 -4.0 1.13 0.12 1.5 -0.38 -2.4 -1.7 

The failure of the Hund's-rule model to provide a good quantitative description of 
experimental data on actinides can be understood by computing the 5P magnetic ground 
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states in intermediate coupling. One finds that the strong 5f spin-orbit interaction and the 
5f-5f Coulomb interactions (cf. table 2) mix other LSJ levels into the Hund's-rule ground 
state. This has a pdcularly strong effect on the quadrupole moment ( Q z z ) ,  on ( I  . s), 
and therefore also on ( T }  (see appendix). Atomic calculations show that for uranium 5P, 
the purity of the Hund's rule ground state 3H4 is only 65%, with contributions also from 
3F4, IG4, 3F3 and 3H5. The final states of interest are those with a 3d core-level hole and 
an extra 5f electron, 3d95f"+' (J'M'), which are accessible from the ground-state S P ( J M )  
with the dipole selection rules AJ = 0, f l  and A M  = 0, f l .  Cowan's atomic Hartree- 
Fock program with relativistic corrections [37] provided values of the Slater and spin-orbit 
parameters (tables 2 and 3), which were subsequently reduced by 20% to include the effects 
of intra-atomic relaxation. 
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Table 2. The ab initio HMm-Fock values (eV) of h e  Slater and spin-orbit parameters in the 
inilial sfate configurations. 

Configuration F2(5f, 50 F%f, 50 F%f, 50 F(50 
U 5P 9.514 6.224 4.569 0.261 
U S P  8.857 5.748 4.204 0.235 

Table 3. The ab inirio Hartree-Fock values (eV) of the Slater and spin-orbit parameters in lhe 
final slate confimrations. 

~~ 

U 3d95P 10.025 6.572 4.831 0.301 73.384 2.564 1.190 2.003 1.211 0.847 
U 3d95@ 9.425 6.136 4.495 0.275 73.386 2.357 1.089 1.832 1.107 0.774 

The branching ratio for circular dichroism, rM5/(zM$ + ZMJ, is equal to 1 and 0.02 for 
an excited state with a single elecwon in a 5f level with j = 5 and j = f ,  respectively. 
(In fact, the first of these results is a simple consequence of the dipole selection rules, 
since a j = 4 to j = wansition must involve a change of more than one unit of angular 
momentum.) This explains qualitatively the low branching ratios of the 5P3 configurations, 
since for n < 6 all electrons are in b e  j = f level. In intermediate coupling the branching 
ratio of the circular dichroism increases to 0.052 and 0.16 for,Sf- and 5f3, respectively. 

The results of atomic calculatiae are given in table 4, where the moments have been, 
renormalized to reproduce the total 5f moment of M = -1.7 pa. The justification for 
rescaling the moments in tables 1 and 4 stems from the fact that a weak crystal field has 
no effect on the shape of absorption spectra [38], changing only the overall intensities 
and moments by a constant factor. This is a rather interesting phenomenon, worthy of 
further comment. Although the intermediatecoupling ground state is a linear combination 
of different LSJ levels, a weak crystal field which is much smaller than the LSJ level 
splitting will preserve this linear combination and therefore the ratios (Lz):(Sz}:(Tz} of the 
ground state (provided, of course, that we do not change the spin-xbit or 5f-5f Coulomb 
interactions). The effect of symmetry breaking due to the crystal field is similar to the 
case of photoemission, discussed in [39]. For a small crystal field the shape of the circular 
dichroism will not change, hence the branching ratio remains the same. This fixes the ratio 
of the moments (Lz}:(Sz):(Tz), since these moments are duectly related to the branching 
ratio by the sum rules. Of course, the total intensity of the dichroism may change, but a 
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constant spectral shape dictates that the moments L,, S, and T, scale together. This is the 
justification for reducing the total moment M ,  while keeping (Se ) / (Lz )  fixed. This scaling 
works very well with actinides and rare earths, but tends to break down with 3d transition 
metals, where the crystal fields are typically as high as 1-2 eV. 

Table 4. The calculated moments for the 5f' atomic ground state configurations in intermediate 
coupling. The moments have teen rescaled with the same factor to reproduce the known total 
5f moment, M. The calculated total moments before rescaling are denoted by M'. 

configuratio" (LA (&) (G) (se)  ( s e ) / ( L z )  M* @ B )  M (WE) 

U Sf' -2.6 0.43 0.29 1.3 -0.50 -1.4 -1.7 
U 5f2 -2.4 0.36 0.42 1.6 -0.66 -3.3 -1.7 
U se -2.8 0.55 0.3i 1.5 -0.53 -3.4 -1.7 
U 5f4 -3.7 0.99 0.12 1.4 -0.37 -2.5 -1.7 

Before comparing the atomic calculations with our results for (Se)/(&) and (TJ,  we 
note that the second sum-rule is not exact: it does not account for the influence of the 3d-5f 
electrostatic interaction,  which also transfers spectral weight from the & to Ms edge 1401. 
We can estimate the magnitude of this correction by comparing the M4 and M5 intensities in 
the calculated dichroism spectrum with the calculated values for the ground-state moments. 
This gives a correction of 3%, resulting in the revised ratio, (Se)/(.&) = -0.59f0.03, and 
(T,) = 0.37 =t 0.03. 

Returning to table 4, we find that the experimental values of both (Se)/(LT) and (q) 
are approximately mid-way between those computed for uranium 5 P  and 5P configurations 
(this is consistent with a neutron diffraction analysis [41], which favours 5P). We therefore 
conclude that the ground state is expected to be mainly a mixture of these two configurations 
with a crystal field. The weight of each configuration in the ground state depends on the 
precise value of the charge-transfer energy, hybridization and on-site Coulomb interaction. 

6. Dichroic spectra and line-shapes 

In addition to the integrated intensities at the uranium M4.5 edges, we can compare the 
calculated MXCD spectra for 5P3 (figure 6) with the experimental data. Bearing in 
mind the estimated 4~30% uncertainty in the overall scaling of the measured dichroism 
spectrum, calculated & peaks for both the SP and 5f3 configurations agree in shape and 
magnitude with our findings. Neither of the calculations predict significant structure of the 
& resonance, and indeed very little was found. In contrast, the Ms calculations exhibit 
considerable structure, which is very sensitive to the atomic configuration. Qualitatively, this 
is in accord with our findings, which show the weak Ms peak to be far more structured than 
M4. The precise shape of the M5 dichroism, however, is not reflected in either calculation 
but seems to be closer to 5P. 

7. Conclusions 

The main conclusions drawn from the present experimental and theoretical study of uranium 
M-edge circular dichroism can be summarized as follows. 

(1) Fluorescence detection offers a very powerful probe of magnetic dichroism following 
core-level excitation. This has proved particularly valuable for measurements in the 3-4 keV 
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2 
(a) Atomic cbnfiguration: 5f 

3.52 3.56 3.60 3.64 3.68 3.72 3.76 
Energy (keV) 

(I) Atomic configuration: 5f 
1 2  , 

3.52 3.56 3.60 3.64 3.68 3.72 ~ 3.76 
Energy (keV) 

Figure 6. Atomic calculations of the absorption spectrum (normalized Io unity and offset for 
clarity), and circular dichroism, for the 5P and 5P configuations. The calculated spectm have 
becn ~nvoluled with a Lnrenlzian of FWHM= 4.0 eV and a Gaussian of FWHM = 1.9 eV, to 
simulate the effects of lifetime broadening and instrument resolution. The latter was increased 
from a nominal value of 1.3 eV to match the calculated hb and Ms widths in the total attenuation 
to the measured values of 6 3  eV and 5.3 eV, respectively. Note that, to facililale comparison 
with figure 5 ,  the Md.5 dichroism signals have been multiplied by f3ctors of ten and two. 

region, which have confirmed strong MXCD at uranium M edges and Pd L edges [42]. In 
non-dilute systems, though, the large absorption corrections can add considerably to the 
experimental errors unless the total absorption spectra are very well characterized. 

(2) The results of these measurements agree qualitatively with those of resonant magnetic 
diffraction from antifemmagnetic uranium compounds [l], but the h4XCD spe&a exhibit 
considerably more structure than diffraction. This is largely because the broad real resonant 
tails which smear out the diffraction spectra are absent in absorption. 

(3) The sum rules for integrated intensities in MXCD spectra, which have been applied 
successfully to the determination of spin and orbital local moments in 3d, 4f and 5d metal 
ions [33, 351, cannot, in isolation, provide unique values for the spin moment in uranium 
(50 ions, since the strong spin-orbit interaction produces a very large value for the magnetic 
dipole term, {Tz). 
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(4) Integrated MXCD intensities in US are not well described by a Hund's-rule ground 
state, again due to strong spin-orbit coupling, but are close to the results for 5p and 5P 
atomic configurations in intermediate coupling. 

(5) A quantitative description of both the integrated intensities and MXCD spectral 
lieshapes requires an atomic calculation which accounts for hybridization with the valence. 
levels of neighbouring atoms in a crystal lattice. 
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Appendix: some notes on the evaluation and interpretation of (Tz) 

It is instructive to calculate the values of the ground-state moments for an f1 configuration 
[43]. Since 1 and s are coupled antiparallel for less than half-filled shells, the state vector 
is a sum over spin orbitals and therefore the moments are frustrated 

Inserting 1 = 3, s = $, j = 1 - s = $ and mj = - j  = 9 in (Al.) gives the one-electron 
wavefunction 

I@) = f'('F5/2.-5/2) = ~ ~ 3 . - 3 x l / Z - ~ @ 3 . - - 2 x - 1 / 2 ~  (U 
Since this wavefunction is normalized to unity, we have 

n = (+I*) = $ + 3 = 1 ('43) 

(L,)  = (@llzl+) = -? (A4) 

(SA = (@lszl*) = 5. (A5) 
Likewise, the quadrupole moment is the expectation value of the quadrupole operator, qzz 

(QJ (?NqzzI@) = (ell: - ~ $ U +  U@) = F. : (A61 
( Q J  measures the alignment of the orbital with the magnetic moment by spin-orbit 
interaction. The anisotropy of the electronic charge induced by the crystalline field of 
the lattice is relatively small with f metals, and can be neglected in the first instance. A 
sum rule relates the quadrupole moment to linear dichroism [38] 

for the number of electrons. The total orbital moment is simply 

and similarly one can write the spin polarization (i.e. half of the spin moment) as 

where the y+,-,o represent the absorption spectra with magnetic components v = +1, -1 
and 0, respectively. Since., from (A6), the signal depends on 1;. one can measure both 
ferro(i)magnetic and antiferromagnetic ordering with linear dichroism. 

The operators considered so far produce only diagonal matrix elements; that is, they 
do not mix the *r,,,, xc basis states, and can be written simply in terms of their occupation 
numbers, $ and $. The spin-orbit operator, on the other hand, does mix the basis states by 
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changing the quantum numbers m and U ,  so all four possible matrix elements contribute to 
(1 .s) 

(-48) 
where the off-diagonal terms are generated by the ladder operators which act on the 
wavefunctions as 

W . m  = [IO+ 1) - m(m * 1)1”’41,m*1 ( A 9  

s*xq/2 = X * l / l .  (A101 
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( I .  s) = (@Il,s, + ;I+.- + ;l-s+l$) = -2 

and 

The non-zero off-diagonal terms are therefore all of the form 

(@~,-~xI/z~~-~+~@~.-zx-I/z) = (@~,-ZX-I/Z~I+S-I@~,-~XI~Z) = ( A l l )  
leading to a total off-diagonal contribution to the spin-orbit expectation value of 43%. In 
LS coupling it is, of course, simpler to calculate ( I  . s) directly from 

( I . s ) = ; [ ~ ( ~ + ~ ) - - ( I + ~ ) - ~ s ( s + I ) ] .  (-412) 
Finally, the magnetic dipole terms can be written 

Interestingly, for this simple example, the diagonal contribution of 

contributes exactly half of the total expectation value (T,). 
Equation (A13) shows that (T,) provides a measure of the spin anisotropy when the 

charge distribution is distorted, either by spin-orbit interactions or by a crystal field, where 
the latter is weak for f metals. From (A14) we can interpret at least part of (T,) as 
the spin-weighted quadrupole moment, which explains the strong correlation with charge 
anisotropy, magnetic anisotropy and, via (A7), linear dichroism. It is therefore of little 
surprise that although US has a cubic lattice (and therefore a zero crystal-field-induced 
quadrupole moment), it has a large magnetic anisotropy due to the strong 5f spin-orbit 
interaction, and a similarly strong (TJ. 

While one could, in principle, deduce the moments for the configurations fL, f3, etc, 
in a similar way, many-electron wavefunctions must be antisymmetrized, which makes 
the calculations more tedious. To summarize., (T,) can, under certain circumstances, be 
computed analytically. It is a su’m over operator products, including (1 .  s), or, alternatively, 
the quadrupole operator qzz. Since strong spin-orbit coupling also tends to lead to strong 
magnetocrystalline anisotropy, one might expect highly anisotropic systems to exhibit large 
values of (TI), and indeed, the present case of US is a good example of such a connection. 
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